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Identification of the Acquisition System in Medical
Images by Noise Analysis

Abstract: Medical image processing aims to help the doctors to improve
the diagnosis process. Computed Tomography (CT) Scanner is a medical
imaging device used to create cross-sectional 3D images of any part of the
human body. Today, it is very important to secure medical images during
their transmission, storage, visualization and sharing among several doctors.
For example, in image forensics, a current problem consists of being able to
identify an acquisition system from only digital images. In this thesis, we
present one of the first analysis of CT-Scanner identification problem. Our
work is based on the camera identification methods to propose a solution for
such kind of problem. It is based on extracting a sensor noise fingerprint
of the CT-Scanner device. The objective then is to detect its presence in
any new tested image. To extract the noise, we used a wavelet-based Wiener
denoising filter. Then, we depend on the properties of medical images to
propose advanced solutions for CT-Scanner identification. These solutions
are based on new conceptions in the medical device fingerprint that are the
three dimension fingerprint and the three layer one. To validate our work,
we applied our experiments on multiple real data images of different CT-
Scanner devices. Finally, our methods proved to be robust beside giving high
identification accuracy. We were able to identify the acquisition CT-Scanner
device as well as the acquisition axis.

Keywords: Medical image forensics, device identification, sensor noise,

denoise filtering, device fingerprint.
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2 Chapter 1. Introduction

1.1 Medical Imaging overview

Late in the twentieth century, medical imaging becomes the cornerstone in
the world of medicine [Doi 2006]. It represents the tools that are used to
have an internal vision of any anatomical part of the human body. When
we talk about medical imaging, that does not mean the process of taking
a photo and saving it as a memory on a hard disk only. Indeed, medical
imaging helps medical doctors to improve and speed up the diagnosis process
as well. Medical image processing refers to the applied technologies of image
processing in medical disciplines [McAuliffe 2001]. In this regard, different
devices and multiple modalities could be found [Beutel 2000].

Computed Tomography (CT) is an important modality used in medical
imaging. It was first presented by G. N. Hounsfield in 1970, who was awarded
with A. M. Cormack the Nobel Prize in medicine for the innovation of Com-
puted Tomography. It is based on the computerized combination of two-
dimensional cross-sectional x-ray images to produce a three dimensional im-
age of an internal structure for any part of the human body. However, this
imaging revolution required a development in the level of storage and transfer

solutions [Seeram 2015].

DICOM (Digital Imaging and Communications in Medicine) is a standard
image format for storing and transmitting medical images [Graham 2005]. In
addition to image content, DICOM contains a header file that includes all
the information about the patient and the acquisition system. Moreover, it
contains some communication and networking protocols that ensure the easy

transmission of these medical images among different users [Pianykh 2012].
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1.2 Problem and work motivation

Security is one of the most important aspect to consider when we talk about
data or image transmission [Pan 2010|. Although it becomes nowadays too
easy to transmit or share the DICOM files [Bidgood 1997|, it is critical to
authenticate their content. DICOM files can be modified easily. So, different

scenarios can be discussed when we think about securing medical images:

1. Health assurance: let us propose that someone wants to go to an assur-
ance company to order a health assurance. The assurance company will
ask him about his medical profile. This profile contains all the informa-
tions about his health situation, medical history and even his medical
images. In such situation, two options could be considered. First, the
client is healthy, so he will pay the normal fees for the assurance com-
pany. Second, the client has a health problem, so he has to pay addi-
tional fees to the assurance company because the probability of having
a surgery is high. In the second case, the patient can take an another
image of a healthy person, then he can edit its DICOM header to insert
his personal informations with the device model. So, he removes all the
informations about the disease, and can avoid the additional fees. How-
ever, if we are able to identify the C'T-Scanner device from the image,
we can go back to the source device dataset and retrieve the original

image information.

2. Bank credits: let us suppose another one that wants to go to a bank
and order credits for the next ten or twenty years in order to buy a new
house or a new car. The bank will ask for his medical profile. Again,
two options should be considered. First, the client is healthy, so the
bank will accept his request and approve the required credits. Second,

the client has a health problem, so the bank will refuse his request and
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will not give him credits even for five years, because the probability of
refunding his credits is less than usual. In this case, the patient can fake
his own health informations by replacing it with this of someone healthy.
So, his disease informations does not exist anymore, which encourage the
bank to accept his request. Also, if we are able to identify the source

CT-Scanner, we can avoid such kind of fraud.

3. In some cases, it is easier to convert the DICOM image into another for-
mat and share it, or even to make just a print screen of the image and
send it by email. In this case, any header information will be lost. So,
when the radiologist or the responsible person receives this image, iden-
tifying the source C'T-Scanner device becomes the only way to retrieve

the required informations.

4. In the industry side, when the industrial C'T-Scanner produces an image,
the enterprise may convert it to another format for sharing purposes.
This conversion will produce images without any header file. In this
case, It is also important to identify the CT-Scanner, then to retrieve
the original image informations. So, we can conserve the copyrights and
avoid image attacking in the absence of the header file, since we can

authenticate the transmitted image.

1.3 Contributions

The main objective of our work is to identify the CT-Scanner device from
its images especially for authentication purpose. This is exactly the objec-
tive of what is called image forensics [Fridrich 2009]. Image forensics ad-
dresses two essential problems: device identification [Liu 2010] and forgery
tracing |Farid 2009, Yerushalmy 2011|. Our work consists of identifying the

CT-Scanner from its output images by noise analysis. In this analysis, we
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present four contributions to achieve the required goal. We based on digital
camera identification methods to propose our solutions, and the key point of

our contributions is to extract the CT-Scanner sensor noise from its images:

1. We assume that the CT-Scanner acquisition sensor leaves noise as a
fingerprint in each acquired image. The proposed method consists of
two parts. First, extracting the Reference Pattern Noise (RPN) from
a given CT-Scanner as its fingerprint. Second, detecting its presence
in any new tested image by correlation. The extracted noise in this
proposed method was not pure, since it contains some traces of the

content scene [Kharboutly 2014].

2. We provide some improvements on the previous proposition in order
to avoid the scene traces. We eliminate these traces in the noise im-
age by a binary generated mask. Then, we present a new RPN and
a correlation map concept. This correlation map gives more impor-
tance to the unmasked parts of the processed images than the other
ones. Finally, the correlation is computed with respect to the correla-

tion map [Kharboutly 2015b].

3. Based on the previous method and the specificity of 3D medical images,
we produce a new CT-Scanner fingerprint which is composed of one
RPN for each axis. The objective is to identify a tested slice even if the
original image was attacked by rotation [Kharboutly 2015a].

4. Based on the first contribution and the intensity Hounsfield scaling in
CT-Scanner image, we present a new CT-Scanner fingerprint, which con-
sists of three layer RPNs. We apply our work on each layer separately.
Finally, we are able to identify the source CT-Scanner of a real tested

slice when two of its layers correspond to the same CT-Scanner device.
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1.4 Thesis organization

The goal of this thesis is to give a documentation about our contributions. We
alm to give a complete research on the medical image forensics, in particular,
the CT-Scanner identification. This thesis is organized in four main chapters

as follows:

e Chapter 2 provides an overview of the CT-Scanner, its acquisition chain
and how it works. The DICOM format and our work orientation are

also presented in this chapter.

e Chapter 3 studies different researches presented in the literature about
device identification either in the photography application or in the med-

ical one.

e Chapter 4 explains our first group of contributions that are based on

the digital camera identification.

e Chapter 5 presents our second group of contributions that are based on

the specificity of medical images.

In chapter 6 we conclude this thesis by some discussions and present our vision
for a future work in this domain. In Chapter 7 a summary of our work is given

in French.
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2.1 Introduction

Medical imaging is the application of digital imaging for medical objectives.
It is considered as an important part in the world of medicine. It refers to
the different interactions between some forms of energy, which penetrate the
tissues in order to have an internal view of any part of the human body with-
out need to be opened up surgically [Bushberg 2011]. It is used to help the
doctors in examination and diagnosis process by giving a quite good image
quality. Most medical imaging systems require the interaction between this
energy and the tissue where it goes throw. Without any kind of interaction
like absorption or attenuation for example, the detectors of this energy will
not be able to extract any useful information about the imaged tissues, con-
sequently no image will be acquired using such information [Wolbarst 2013].
Different modes of medical imaging are existed regarding the different types
of energy which used in the image acquisition. These modes are called the

modalities [Leondes 2005|. These modalities include:

e Radiography: The first generation technology of medical imag-
ing [Sutton 1987|. It is composed of an X-ray sender in front of the
patient and an X-ray receiver on the other side. A pack of x-ray is sent
by the x-ray tube through the patient tissues. These x-rays interact
with the patient tissues, and some of it reach the detector. This process
constructs the radiographic image [Benseler 2006]. Fig. 2.1 illustrates
an example of a radiography imaging device, and images for multiple

anatomical parts of the human body.

e Magnetic Resonance Imaging: An imaging technology that uses mag-
netic fields and radio waves to provide a detailed images of the soft
tissues |Edelman 1993|. It is used for disease detection and diagnosis

purposes. By using protons that are so sensitive to magnetic fields, it
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Figure 2.1: Radiography image

can produce the MRI images. Protons are centered in each hydrogen
atom of water molecules of the human body. During the acquisition,
bursts of radio waves are sent through a specific anatomical part of
the patient. These waves change the alignment of exited protons in
this anatomical part. Then, when the radio waves are stopped, the
affected protons are realigned. These affected protons, in their turn,
send radio signals to be collected by the receivers. These signals contain
information about the exact location of imaged protons. Finally, the
combination of millions of protons signals creates a detailed images of
the anatomical part. MRI scans the anatomical part along a directional
axis. The generated slices are 2D, where it divides the anatomical part
in a series of 2D slices. Then, these generated slices are combined to-
gether to give the 3D MRI image [Kuperman 2000]. Fig. 2.2 illustrates

an example of an MRI imaging device and an MRI image of a brain.

Ultrasound Imaging: One of the most used imaging technology. That is
portable and radiation free [Von Ramm 1990]. It provides also a cross-
sectional view of the imaged anatomical part of the human body. More-

over, it can be acquired in real time, that makes it a good indicator for
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Figure 2.2: MRI image

Figure 2.3: Ultrasound image

the interventions. The ultrasound signals pass through the tissues, some
of it are reflected back to the transducer (echo signals). The echo signals
are used to construct the ultrasound image. The ultrasound transducer
works as a sender and a receiver as well [Del Cura 2012]. Fig. 2.3 illus-
trates an example of an ultrasound imaging device, and an ultrasound

image of a fetus.

e Nuclear medicine: Produces detailed images of what is happening in the

human body at the cellular level. Tt is used to study the body function,
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Figure 2.4: Nuclear medicine image

measure its chemical and biological processes [Mettler Jr 2011]. During
the acquisition, radio-tracers are injected into the bloodstream of the
human body. These radio-tracers go through the anatomical part and
send out energy in a form of gamma rays. Then, special imaging sensors
detect the gamma rays and send it to the computer in order to create the
image. This imaging system provides special information that cannot be
acquired using other imaging system [Cherry 2012]. Fig. 2.4 illustrates

an example of Nuclear medicine imaging device and an image of a head.

e Computed Tomography: Computed Tomography or what is called CT-
Scanner imaging, is an imaging technology, which integrates a series of
x-rays views that are captured from so many different angles to create
cross-sectional images [Lisle 2012]. It provides a 3D representation for
any part of the body. By passing this body part through a circular tube
which contains an x-rays sender and a set of detectors on the opposite
side, these detectors collect the acquisition object information and send
it to a computer which processes it, then displays it as a gray-scale
image to the user. It is widely used since it provides a lot of information

about the patient, physical features and potential disease [Hsieh 2009].
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Figure 2.5: CT-Scanner image

Fig. 2.5 illustrates an example of a CT-Scanner device and an image of

a neck.

CT-Scanner is one of the most used imaging system in the medical imaging
world |Brown 2008|. The image of the anatomical part of the human body
could be reconstructed based on a large number of projections. Fig. 2.6 illus-
trates this process. The energy is sent from the source, then, passed though
tissues, and finally, projected onto detectors, which in their turn sent it to the
computer for post-processing and constructing a clear internal image of the

anatomical part.

2.2 CT acquisition chain

The CT-Scanner imaging system is composed of three basic parts: data acqui-
sition, image reconstruction and image display [Seeram 2015|, as illustrated

in Fig. 2.7

e Data Acquisition: It represents the process of x-rays which are sent from
the source x-ray tube, passed through the patient and received by the
detectors. When the x-rays passed through the patient and reached the
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Figure 2.6: Image acquisition and reconstruction [Seeram 2015]
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Figure 2.7: CT-Scanner imaging system [Seeram 2015]

detector, it registers the received information values. This information
includes the transmission and attenuation values. Then, rotating the x-
rays tube and these detectors several times during the patient movement
will produce a 3D image rather than just a 2D slice only, since one slice
is generated per each rotation [Ketcham 2001]. At the end of this step,
enough information should be registered in order to continue the recon-
struction step. However, many parameters should be tuned during the

acquisition step, these parameters include: Beam Energy: (80-140)
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Kv, which corresponds to the energy of x-rays beam that is sent from
the x-rays tube. Increasing beam energy will speed up the electrons,
and produce more energy. Tube current: (20-500) mA, it represents
the x-rays beam intensity, or the quantity of the sent electrons. Scan
time: (0.3-4) s, is the x-rays production time in one rotation. Increas-
ing this time will increase x-rays quantity. Slice thickness: (0.5-10)
mm, thickness along 'Z’ axis. Pitch: (0.5-2) s, is the table movement
speed in one rotation. Moreover, the data acquisition step includes two
conversion cycles. The first one is when detectors receive the x-rays and
convert them into electrical signals using the electrical detectors. The
second one, represents the conversion of electrical signals into digital

values that will be used later in the reconstruction step.

Image Reconstruction: The collected information from detectors is
sent to a computer for the 3D reconstruction [Hsieh 2006]. The com-
puter uses mathematical techniques for the tomography reconstruc-
tion in order to reconstruct 3D images. These 3D images are re-
constructed from a series of cross-sectional planes that are acquired
along 'Z’ axis. These techniques are called the reconstruction al-
gorithms. Several reconstruction algorithms are existed like filtered
back-projection, which is commonly used in the iterative reconstruc-
tion algorithms that are widely used in the modern generation of CT-
Scanners [Hsieh 2013, Beister 2012, Cierniak 2011|. Although the prin-
ciples of these algorithms are known, their implementations are not de-
scribed by the manufacturers. Many parameters should be tuned during
the reconstruction step, these parameters include: FOV: (10-50) cm, is
the reconstruction field of view, which represents the image size in "X’
and 'Y’ directions [Hsieh 2004]. Reconstruction matrix: (512 x 512),

is the image resolution. Convolution kernel/Reconstruction filter:
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includes the bone filter for hard details and soft tissue filter for smoothed

details.

e Image Display: The reconstructed image is then stored to be viewed or

analyzed later using known softwares.

The first CT-Scanner was presented in 1972 by Sir Godfrey
Hounsfield [Jones 2013].  Earlier CT-Scanners had acquired images of
one slice at a time. In the next generations that allows an x-rays tube to
go around the patient were known as helical or spiral CT to acquire images
of multiple slices, one slice for each tube rotation. This generation gives
the ability of imaging larger anatomical parts of the human body. Recent
generations of CT-Scanners have proposed the multiple rows of detectors,
where the images of multiple slices can be acquired, where multiple slices are
acquired by a tube rotation. This generation provides a larger area of the

patient to be imaged as illustrated in Fig. 2.8.

x [

Figure 2.8: (A)Multi-detector system. (B) Multi-slice CT [Seeram 2015].
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2.3 How the CT-Scanner works

The patient is positioned on the CT-Scanner table. The source sends x-
rays through the anatomical part of the body to be imaged. The detector
on the other side of the patient receives these x-rays and registers their re-
ceived or attenuated values. Both x-rays source and detectors are located
inside the CT-Scanner gantry and rotated around the patient during acqui-
sition [Bushberg 2011]. CT-Scanner detectors convert x-rays photons into
digital values to be sent to the computer. CT-Scanner has an indirect de-
tector. It consists of two parts: a scintillator and a silicon photodiode. The
scintillator is the first part that collects x-rays that are sent from the source
and passed through the patient. The scintillator then converts the received
x-rays photons to light. The silicon photo-diode then collects this light and
converts it into an electrical current. Finally, the electrical current is passed
to an analogue-to-digital converter [Kagadis 2011|. However, this acquisition
system produces two types of noise. First, a quantum multiplicative noise that
is resulted from a random number of photons sent by the x-ray tube and the
inhomogeneity of silicone material of the photo-diode. Second, an electrical
additive noise that is added to the image signal during the analogue-to-digital
converter. After computer receives the digital acquisition values, it applies the
reconstruction step using an appropriate algorithm to reconstruct the final im-
age. Although all the CT-Scanners use similar reconstruction algorithms, but
all of their information and parameters are not accessible. Each CT-Scanner
slice is divided into voxels. The dimensions of the CT-Scanner slice may reach
to to 1024 x 1024 voxels. During the reconstruction process, specific atten-
uation values are allocated to each voxel. The final reconstructed image in
then formed as a two dimensional array of pixels. The pixel value of the re-
constructed image is calculated as an average of all attenuation values of the

same volume voxel. This value is compared to the attenuation value of water



2.4. DICOM Format 17

and displayed in a scale of Hounsfield Unites (HU). In the HU, water takes

an attenuation value of zero. The range of HU is 2000 and may reach in some

CT-Scanners to 4000 located in the gray level. Where (-1000) value repre-

sents the intensity of air and (41000 or +3000) value represents the intensity

of compact bone. Fig. 2.9 illustrates the range of CT-Scanner values regarding

Hounsfield scale [Hounsfield 1980]. Fig. 2.10 illustrates an example of a slice
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Figure 2.9: Range of Hounsfield scale.

from a 3D image of crane, and its different values regarding Hounsfield scale.

Finally the image is stored to be viewed later or adjusted for diagnosis

purposes.

2.4 DICOM Format

Medical images are usually stored in an international standard of Digital Imag-

ing and Communications in Medicine (DICOM). DICOM files consist of two
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Figure 2.10: Slice from 3D image of crane.

parts, a header and an image content [Toennies 2012]. The header contains
a mandatory set of data elements the contain information about the medical
image. These informations include (patient information, acquisition param-
eters, acquisition data and acquisition device...etc). While the second part

represents the medical image content.

2.5 Problematical orientation

In case of absence or unauthenticated meta-data about DICOM file, we are in
critical situation since the medical image content can not be authenticated.
So, we need to authenticate the medical image based on the image content
only. Our aim is to identify the source CT-Scanner as a blind device identifi-

cation using the image content only. Then by comparing with the meta-data
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information we can decide whether to authenticate the medical information
content or not. Based on the image content we will extract the noise in order to
analyze it later and identify the source CT-Scanner of any tested CT-Scanner

image.
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3.1 Introduction

Image forensics is the applied technology that concerns about retrieving an
evidence about the source acquisition device [Redi 2011]. It is an impor-
tant field of research that aims to authenticate images by retrieving infor-
mation about their history in case of unauthenticated source information or
content modification. Two basic branches exist when we talk about dig-
ital image forensics |[Piva 2013, Farid 2008]. The first one represents the
group of methods which aims to identify the device that acquires the im-
age [Jenkins 2009], or to decide whether a specific device is the source of this
image or not [Sencar 2013]. These methods depend on analyzing the image
content to detect an evidence of the source device, and are called source device
identification tools |Geradts 2002]. The second group represents the methods
that study the original image statistics in order to trace the image forgery.
This group of methods is called tampering detection tools [Mahdian 2010].
Digital camera identification is the application of first group methods. It is
used to authenticate the source device information. Many works have been
done in this area to achieve this goal [Lukas 2006, Chen 2008, Chen 2007b].
On the other hand, device identification is not limited to the digital cam-
era, but also to the medical devices. Medical device identification is the used
methods for retrieving information about the source medical device in case
of absence or unauthenticated acquisition information [Chen 2007al. In more
particular, CT-Scanner identification aims to authenticate the CT-Scanner
in case of absence or unauthenticated DICOM information. The rest of this
chapter is organized as follows. In Section 3.2 we present an analysis of the
sensor noise and its application for digital device identification. In Section 3.3
we present the identification of the acquisition device in the medical domain.

In Section 3.4 we provide our conclusion.
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3.2 Noise analysis

One of the most popular techniques used for digital device identification is
Sensor Pattern Noise (SPN). SPN is used for digital camera identification. It
analyses the sensor output in order to identify the source camera. Since it is
not possible to access to the camera sensor output, the idea is to characterize
the noise in the camera image output. But before going into the digital camera
identification, we are in need to know the different patterns that constitute
the SPN. In Section 3.2.1 we present the different patterns that constitute the
SPN. In Section 3.2.2 we present the usage of SPN for camera identification
purpose. In Section 3.2.3 we provide some improvements on the camera identi-
fication methods based on the SPN. In Section 3.2.4 we give some applications

of SPN for digital device identification.

3.2.1 Sensor Pattern Noise

In fact, there are two basic components of the SPN as illustrated in Fig. 3.1.
They are the Fixed Pattern Noise (FPN) and the Photo-Response Non-
Uniformity (PRNU) [Lukas 2006]. FPN represents the pixel to pixel differ-

Sensor Pattern Noise

N

FPN PRNU

2

Low-frequency
defects

PNU

Figure 3.1: Sensor Pattern Noise

ence |[Mohammadnejad 2011|, it is caused by dark currents when the sensor

is not exposed to light. It is about an additive noise and is removed from the
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output image by subtracting an empty dark frame from each acquired image.
Since FPN is not stable under temperature nor time, it cannot characterize
the sensor noise. On the other side, the PRNU forms the main part of SPN.
It is basically caused by the Pixel Non-Uniformity (PNU) in addition to some
low frequency components. Low frequency components are caused by light
refraction, it cannot characterize the sensor noise because it is not related to
the camera sensor. PNU is caused by different sensitivity of pixels to light
regarding the inhomogeneity of silicon wafers and imperfections during the
sensor manufacturing [Lukas 2006]. So, it is a unique pattern regarding each

camera sensor, and it can be used for identification purposes.

3.2.2 PRNU-based identification methods

PRNU has many properties that make it an optimal solution for the problem
of digital camera identification [Costa 2012, Goljan 2008b|. These properties

are:

Stability: It is stable over time and under different physical operations.

Generality: Each camera sensor has a unique pattern noise.

Universality: Each image of the same camera inherits it.

e Dimensionality: It has a larger information content of camera sensor.

Robustness: It is robust against different processing operators.

A lot of work has been done on the digital camera identification based
on the PRNU. It was first proposed by |Lukas 2006]. Their method aims to
extract the PRNU pattern from a camera output, then to detect its presence in
any new image of this camera. This detection was applied by correlation like
watermark detection method |Cox 2002]. Their method is composed of two

parts. The first part consists of extracting the camera Reference Pattern Noise
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(RPN) that characterizes the PRNU sensor noise. The second part consists of
detecting the presence of this RPN in any test image by correlation. To extract
the RPN of a camera, two basic steps are included. The first step is to select
a group of images of this camera and extract their noise component, because
this noise component or noise residual, in other words, can characterize the
PRNU noise. The second one is to average the noise components to build
one image that represents the RPN of the studied camera sensor. This RPN
represents an approximation of the PRNU of the studied camera. It is a
unique noise pattern for a given digital camera and can be served as a unique

fingerprint that can be used for identification purposes:
1
RPN = NZWi, (3.1)

where W; is the noise component of the i** image and N is the number of
images. To decide whether an image was acquired by a specific camera or
not, the correlation between the noise component of this image and the RPN
of the specific camera is computed. If the correlation value is larger than
a specific threshold, then the source camera of this image is identified. In
other cases, any other correlation between the noise component of this image
and any other RPN of another camera should have a value smaller than this
correlation value. Fig. 3.2 illustrates the general schema of digital camera
identification. To extract the noise component of an image, the authors based
on [Mihcak 1999| to apply a wavelet decomposition and use Wiener denoising
filter: ,

Xaenlin 1) = X (M#’)’fcf%,

where X is the wavelet sub-band. And finally, they subtracted the denoised

(3.2)

image from the original one to keep the noise component only. Since they
focused only on the PNU component of the RPNU, the noise extraction was
applied to ignore any other low frequency noise components, so we can con-

sider the PNU as the extracted PRNU pattern noise. An average phase was
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Figure 3.2: Digital camera identification [Piva 2013]

applied to remove any additive noise caused by FPN. In fact, this RPN has
two problems. First, it contains some noise artifacts in addition to sensor
noise. Second, it is affected by JPEG compression as visual patterns. Fig. 3.3

illustrates the noise artifacts. Where (a) is the acquired image by camera (d),

digital camera

acquired image Moise component

Magnified portion of the noise

(a) (b) {c) {d)

Figure 3.3: Noise artifacts.

(b) its noise component and (c) is the magnified noise artifacts.
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Chen et al. present an improvement on the source camera identifica-
tion depending on the estimation and detection of PRNU in digital im-
ages [Chen 2007a|. Their improvements were divided into three steps. First,
they used the linear model of digital camera output and estimated the PRNU
from noise residuals. They divided the RPN and a test image into blocks.
Then, they used a normalized correlation as an optimal detector over all blocks
to measure the similarity between a test image and an RPN. Second, they used
the Neyman-Pearson test and estimated the probability of false rejection to
specify a threshold value of the normalized correlation value regarding the
studied camera to decide whether this is the source camera or not. Finally,
they developed the RPN extraction to avoid the RPN noise artifacts. These
periodic artifacts are caused by color interpolation. In fact, this kind of noise is
not unique for one camera, so they applied a zero-mean operation to decrease
these artifact effects. To avoid JPEG compression artifacts, they moved to
the frequency domain by Fourier transformation. Then, they denoised Fourier
magnitude by Wiener filter, so any additional artifacts caused by JPEG com-
pression should be removed. Therefor, false alarms are decreased. Chen et al.
extend their previous work to include the case of RPN attack problem by im-
age modification [Chen 2007b|. They proposed two steps to achieve this goal.
First, they estimated the RPN from non modified images. Second, they used
a sliding window in both the RPN and an image noise component. Then, they
computed the correlation and compared it with a threshold to decide whether
this center pixel is modified or not. Chen et al. include their previous research
tasks from [Chen 2007b] and [Chen 2007a] in one framework [Chen 2008]. Its
goal is to identify the digital source camera and to verify the image integrity.
Based on the PRNU, two tasks were achieved by RPN preprocessing: cam-
era identification and forgery detection. They proposed the RPN as a unique

fingerprint inserted into images by the camera sensor. They used the camera
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sensor output to estimate the camera RPN:

PN = 2= Wil (3.3)

> 12

where W; is the noise component, I; is the original image and N is the number
of used images. Then, they applied some preprocessing corrections in order
to remove any artifacts from the RPN caused by image acquisition steps.
Then, they detected its presence in image blocks by the normalized corre-
lation in order to both, identify the source camera of each block and verify
its integrity. Based on binary hypothesis of Neyman-Pearson criterion they
defined a threshold value to identify the source camera of each block and de-
cide whether each block was modified or not. Finally, they evaluated their
method robustness on different image processing operators and geometrical
transformations. Their proposed framework decreased the error rate com-
pared to [Lukas 2006].

Filler et al. used the RPN in order to identify both a digital camera brand
and its model [Filler 2008]. They used a Support Vector Machine (SVM) in
order to classify images regarding their source camera model and brand. For
each studied camera model and brand, they selected a group of images to build
an RPN regarding each camera model and brand. In addition to the sensor
noise information in an RPN, there exists some traces or periodic patterns.
These patterns are the result of the camera acquisition pipeline. The authors
proposed that these patterns are different from one camera brand to another.
So, they based on these patterns to identify the camera brand in addition
to the RPN information that is used to identify the camera model. They
proposed to quantify these patterns and use its features as an input of the
SVM classifier. Finally, based on their experiments, they were able to classify
the tested images according to the camera model and brand.

Goljan et al. extend their previous work in |Lukas 2006| on digital camera

identification based on the RPN [Goljan 2008b|. Their proposed method was
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able to identify the digital camera even if the tested image was processed.
Two processing operators were studied, the case of cropping or scaling image
and the case of applying digital zoom. They experimentally presented that
they are able to retrieve both the scaling factor and cropping parameters.
Goljan et al. tested their previous method of camera identification based
on a large amount of images in order to evaluate it [Goljan 2009]. They
estimated the RPN of each studied camera using the previous method. Then,
they detect its presence in an image by the Peak to Correlation Energy (PCE),
that is used to measure the similarity by measuring the height of correlation
peak. It is more stable than the normalized correlation since it is not related
to the image size and depends only on the image content. Their experimental
results show two important facts. Firstly, the non-unique patterns which
exist in the RPN are related to the image content and they are the reason of
increasing the error rate. So, it should be removed in order to keep the error
rate at the same level. Secondly, the quality of used images in RPN building

is a basic reason for false alarm.

3.2.3 Improved and advanced PRNU  identification

methods

Some improvements were proposed on PRNU method to increase the identi-
fication accuracy. Kang et al. presented a new RPN extraction method to
enhance the camera identification performance [Kang 2012]. To achieve that,
they removed the contamination of RPN artifacts caused by image content,
JPEG compression and artifacts caused by processing operators during the
image acquisition. They converted the noise component to the frequency do-
main by Discrete Fourier Transformation (DFT). Then, they extracted the
RPN using the traditional method of |[Cox 2002| but in the frequency do-

main. They applied an average operator on the real part of the Inverse DF'T
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to extract the RPN as follows:
N
RPN = real ([DFT <¥)> , (3.4)

where W; represents the phase-only component and N is the number of im-
ages. Then, to detect its presence in any new image they proposed to use
the Circular Correlation Norm (CCN) as a detector. CCN can lower the er-
ror rate to a half what is registered by PCE. It is better than both of PCE
and normalized correlation. They experimentally presented that their identi-
fication method achieved a better performance since it is resistant to JPEG
compression and not affected by image content or artifacts that appear during
the different process steps.

Li proposed an improvement in [Li 2010], by demonstrating that the ex-
tracted RPN from an image contains additional artifacts caused by image
content details and other periodic patterns. This caused an untrusted signal
that is involved to the RPN due to the fact that any other artifacts increase the
error rate. To solve this problem, Li proposed five models to reduce the effect
of image content details. These models are based on user-managed thresh-
olds. The basic objective of these models is to specify a weighting factor for
the RPN components, where the smaller important components of RPN are
given a high weighting factor, while the artifacts of image content are given a
lower weighting factor. So, in the spatial domain, the extracted noise resid-
ual of RPN is preprocessed by each model in order to eliminate the effect of
image content. Finally, the normalized correlation is used in order to detect
the presence of RPN in any new test image. However, as the work is done in
the spatial domain, important components of RPN may also be eliminated.

Other enhancements on PRNU methods were proposed in order to improve
the identification performance. Shi et al. presented a neural network based
method to decrease the image content [Shi 2014]. Their method based on

the previous maximum likelihood estimator to estimate the RPN. Then, they
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used the normalized correlation to measure the similarity between a tested
image and the RPN of any digital camera. They used a neural network to
estimate the weighting factor of image blocks. For each image which is used
in the training or testing steps, a decomposition step is applied to divide the
used image into blocks. Then, from each block they extracted two features,

that are the intensity and the texture features:

; 1
int, 1, = A Z Ii(z,y), (3.5)

(¢.y)Ejenblock

s =3, 2 7 (3.6)
N (z,y)EJtnblock 1+ ’UGT’([Z- (.I', y))

where I;(x,y) is the intensity of image I; at pixel (x,y), NNV, represents the
total number of pixels in the jy, block and var(l;(z,y)) is the variance of
three levels of neighborhood of the pixel (z,y). These features are used as an
input of the neural network. The output of this network regarding each block
represents the weighting factor of this block. They experimentally presented
that their developed method achieves a high performance.

Chan et al. proposed another method to reduce the effect of image con-
tent details [Chan 2012]. The noise component was first extracted from each
studied image using Block-Matching and 3D filtering method [Chierchia 2010]
instead of wavelet based denoised filter since it shows better identification per-
formance [Chierchia 2010]. The camera RPN was estimated using the maxi-
mum likelihood estimator. Then, the tested image is decomposed into blocks.
For each block, the normalized correlation p(b) and the predicted one p(b) are
calculated, where b is the block index. So the normalized correlation of each

image is:

_ P
IeM
where M is the number of blocks. The predicted correlation is:

=3 (3.8)

IeM
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p = Ho, (3.9)

where H is the block feature matrix. These features include three types (in-
tensity, texture and signal flatting). 6 is estimated using the least square
estimator. Both the normalized correlation and the predicted one are served
as an input of the SVM, and the output represents the digital source cam-
era class. They experimentally showed that the identification accuracy is

improved using their proposed 2D classifier.

3.2.4 Other PRNU applications

The specific properties of PRNU motivate other applications to be done in
order to identify the imaging device. Khanna et al. based on the PRNU to
identify the digital flatbed scanner [Khanna 2007|. In the spatial domain, they
estimated the noise residual of RPN using the maximum likelihood estimator
as a unique fingerprint. Then, they used an SVM classifier to classify the
acquired image regarding the flatbed scanner class. This classifier achieved a
better performance than the classical correlation measurement. Another work
on digital flatbed scanner is presented in [Choi 2010]. The authors estimated
the RPN in the frequency domain. Then, they detected its presence in any
new image by Euclidean distance, taking into consideration that the source
flatbed scanner has the minimum distance with the tested image. Fig. 3.4

illustrates an example of a digital flatbed scanner.

Figure 3.4: Digital flatbed scanner.

Away from the PRNU, there are other techniques to identify the source
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device. For example Celiktutan et al. based on the fingerprint pattern created
by the Color Filter Array (CFA) in order to identify the source cell phone
camera [Celiktutan 2006]. They used an SVM classifier to classify the tested
image according to the cell phone class. Kharrazi et al. presented a blind
camera identification method in [Kharrazi 2004]. They classified the studied
images regarding the source camera features. They extracted some color and
quality features from the studied images, these features were the input vector

of a classifier, and the classifier output refers to the studied camera class.

3.3 Medical device identification

When we turn toward the medical side, we cannot find many image foren-
sics work. Huang et al. presented a first analysis of medical image foren-
sics problem in [Huang 2012|. They proposed a method to detect whether
a medical image has been modified or not. They used an SVM classifier
with two groups of features as input. These features were extracted from the
medical image. First group of features is the Histogram statistics of Recog-
nized Block-based Discrete cosine transform coefficients (HRBD) [Shi 2005],
these features correspond to the statistical moments of the Discrete Fourier
Transform of one Histogram (DEFTH) [Wang 2006]. The second group of
features is the Histogram statistics of Reorganized Block-based Tchebichef
moments (HRBT) [Liu 2009], they are extracted from the filtered version of
DFTH [Wang 2006]. They experimentally verified the performance of their
detection method on four modalities of medical images. These modalities
were: MRI, CT-Images, X-ray and Ultrasound images. They were able to de-
tect the falsification of these medical images with a good detection accuracy.
In the direction to characterize the noise in CT-Scanner images for identifica-
tion purposes, Solomon et al. compared image noise properties between two

CT-Scanners from different manufacturers [Solomon 2012|. They based their
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comparison on the noise texture. They characterize the noise texture using
the Noise Power Spectrum NPS by computing the square of Fourier transform
of the regions of interest in a uniform phantom®:

dyd,

NPS(u,v) = NN
ztVy

|F[I(2,y) = Pz, )], (3.10)

where u and v are the spatial frequencies in the x and y directions, respectively,
d, and d, are pixel size, N, and NV, are the number of pixels in the z and
y directions of the ROI, F[] denotes the 2D Fourier transform, I(z,y) is the
pixel value of a ROI at position (z,y), and P(z,y) is a 2" order polynomial fit
of I(z,y). Subtracting P(z,y) from I(x,y) reduces the low frequency artifacts
in the NPS measure. They based on three steps to compare the convolution

kernels between General Electric Scanner and Siemens one:
e Find the NPS of a uniform image reconstructed by each kernel.
e Filter the NPS by a human visual function.

e Compare the filtered NPS curves using both Root Mean Square Dif-
ference (RMSD) and Peak Frequency Difference (PFD) as similarity

measurements.

Their experiments showed that NPS has the ability to differentiate two CT-
Scanners of different manufacturers. But, this NPS cannot serve in case of
two CT-Scanners models of the same manufacture. In addition that the spe-
cific conditions of extracting the NPS do not make it an ideal solution for
CT-Scanner identification, since the NPS is calculated from an image of a
homogeneous object for example.

Duan et al. proposed a method for medical device identification for digital

radiography images [Duan 2014]. Their method is based on the pattern noise

!Phantom is a special designed object that is used to evaluate, analyze and tune the

performance of medical imaging device.
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model proposed by [Lukas 2006] to extract the RPN of digital radiography
noise as an acquisition system fingerprint. To build the fingerprint of a digital
radiography system, they averaged the noise residual of multiple image as

follows:
XN
RPN = N ;1 n;, (3.11)

where n; is the noise of digital radiography image, N is the number of im-
ages. 'To denoise the digital radiography image, they used a contourlet fil-
tering [Satheesh 2011, Do 2005]. Then, they detect the presence of this fin-

gerprint in any new digital radiography image based on the correlation value

p:

RPN
p =corr(RPN,n) = M, (3.12)
ORPNOn

where n is the noise of digital radiography test image and o is a defined pa-
rameter. Then, the correlation value is compared with a manual threshold to
decide whether this digital radiography image is identified correctly or not.
They experimentally presented the ability of their method to identify the dig-
ital radiography acquisition system for a digital radiography test image. They
verify their method on seven digital radiography systems and they were able
to identify the source acquisition system with a high identification accuracy
around 99%. But this work was applied only on the primitive 2D images of
X-ray radiography.

Duan et al. presented a work on CT-Scanner identification [Duan 2015,
Duan 2016|. They proposed to identify the CT-Scanner devices based on its
reconstruction algorithm. They characterize the radial noise generated by
CT-Scanner as a footprint, which is identified by the correlation between 180
directions of projection on 'Z’ plane of the radial noise component and its
average. They based on the classical method of |Lukas 2006] to extract the

noise residual n:

n=-s—F(s), (3.13)
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Figure 3.5: CT 3D image reconstruction algorithm footprint extraction.

where n is the image noise, s is the original image, and F'() is a wavelet based
denoising method. Then, they estimated the noise of 180 angles and computed

their average as follows:
180

= p;/180, (3.14)
j=1

where p is the average of noise projections. Then, they computed the nor-

malized correlations between 180 of noise projections and the averaged one

o (P —p)-( )
- _ P—p)Pi —Pj) .
C(j) = corr(p,pj) = 7———= 25 € [1,180). (3.15)
7 o= bl = o
This 180 correlation values represent an image footprint as illustrated in

Fig. 3.5

The resulted footprint vector C' served as an input of an SVM classifier
to classify the tested image regarding a set of CT-Scanners. They were able
to validate their method based on their experiments by an accuracy about
95.04%. The basic limitation is to extract the noise using the classical method
of [Lukas 2006], that will leave high frequency traces in addition to the noise.
Moreover, applying an average on this set of projections enhances the high

frequency traces, that will change the SVM classification to the anatomical
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content level.

3.4 Conclusion

As we noticed, a lot of work has been done in the field of digital camera
identification, most of them refers to [Lukas 2006|, which is based on PRNU
methods. Some improvements were applied to increase the identification ac-
curacy. But when we turn to the medical side, we cannot find such amount
of work in the medical device identification, and especially on CT-Scanner

identification.
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4.1 Introduction

Regarding the different work on digital camera identification, most of the ex-
isting methods are basically based on the PRNU. PRNU-based identification
methods achieved quite good results and identification performance. More-
over, in the analysis of CT-Scanner acquisition sensor and the camera imaging
sensor, we noticed some kinds of similarities in the way of noise production
and classification. Therefore, we propose to use PRNU-based method in the

CT-Scanner identification.

In this chapter, we present a first analysis of CT-Scanner identification
problem, that is aimed to authenticate the medical image information pro-
vided by DICOM file in order to identify its source. To do this, we ignore
the DICOM header information and depend on the image content only. We
assume that the CT-Scanner device left a fingerprint in each acquired im-
age. This fingerprint is a unique one and related to the CT-Scanner model.
The CT-Scanner fingerprint exists in the image noise, so we need to extract
the noise from the CT-Scanner slices in order to extract its corresponding
fingerprint.

We based on the identification method that is proposed in [Lukas 2006]
to extract the Reference Pattern Noise (RPN) of the CT-Scanner as a unique
fingerprint regarding its model. We describe how to extract this RPN from the
CT-Scanner image content, then how to detect its presence in any new tested
slice in order to authenticate its source information. We also provide some
improvements on PRNU method, which consist of building a correlation map
that gives an importance to each image pixel in order that the identification
is based on the most important parts. Since the identification is basically
related to the noise information, the core of our method is to extract the noise
from the CT-Scanner slices, and we present a full description of the denoising

method.



Chapter 4. CT-Scanner identification based on sensor noise
42 analysis

In Section 4.2 we present the CT-Scanner identification method based on
the PRNU. In Section 4.3 we provide some improvements on the CT-Scanner
identification method. The denoising method is presented in Section 4.4, and

finally, we give a conclusion about this work in Section 4.5.

4.2 Identification based on sensor noise

We derive our work in CT-Scanner identification from the one presented in
[Lukas 2006]. Our proposed method consists of extracting an RPN as a fin-
gerprint of the CT-Scanner. Then, in the presence of many CT-Scanners with
their fingerprints, we can measure the similarity between any new slice, and
each fingerprint in order to authenticate the source CT-Scanner. We use the
normalized correlation as a similarity metric. The tested slice is related to a
specific CT-Scanner when it has a high correlation with its corresponding fin-
gerprint. Fig. 4.1 gives an overview of the CT-Scanner identification method.
In section 4.2.1 we present the CT-Scanner noise model. In Section 4.2.2
we explain how to extract the CT-Scanner RPN. Then, in Section 4.2.3 we
provide the correlation as a similarity metric and when to decide the source
CT-Scanner of a tested slice. Finally, experiments and discussions are pre-

sented in Section 4.2.4.

4.2.1 CT-Scanner noise model

From Section 2.3, and based on the sensor noise classification produced
in [Lukas 2006, Goljan 2009], we can generalize the PRNU of CT-Scanner
sensor pattern noise:

PRNU = PNU + EN, (4.1)

and the CT-Scanner output model:
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Original 3D image Denoising 3D image Noised 3D image 2D Reference pattern noise

£ 8 Blels

; Slice Testing .

Figure 4.1: Identification method overview.

where [ is the CT-Scanner reconstructed image, I, is the image content with-
out any noise, () is the quantum multiplicative noise, and EN is the electrical
additive noise. The acquisition system of CT-Scanner keeps EN lower than @)
noise, it is associated with only few x-rays. Consequently, it cannot character-
ize the sensor noise. So, we extract the CT-Scanner RPN, which characterizes

the multiplicative factor ) of PRNU.

4.2.2 Building the CT-Scanner reference pattern noise

To build an RPN of a given CT-Scanner, we select a group of slices acquired
by this CT-Scanner. Then, as illustrated in Fig. 4.2, we extract the noise
component from the slice content. In order to extract the noise component,
first we apply a denoising algorithm on the original slice to remove its noise
residual. Then, we subtract the denoised slice from the original one to keep the

noise residual only according to equation 4.2. This noise residual represents
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the noise component of the given slice:
n' = s — p(s®), (4.3)

where n is the noise component, s is the slice, F'() is the denoising function
and ¢ is the slice number. We are going to discuss in Section. 4.4 the detailed
explanation about the used denoising method. Then, we apply an average
operator on the slices of noise residual to build one 2D image that represents
the CT-Scanner RPN or CT-Scanner fingerprint. This average step has two

advantages:

1 Since the noise information exists in the high frequency, applying such
average operator will enforce the noise information. Because the resulted

noise component is about an aggregation of multiple noise slices.
2 Decreasing the random noise artifacts, that are exist in low frequencies.

The average operator is applied on the noise residual of the selected slices and

gives an RPN as follows:
X
—— (@)
RPN = N ;:1 n', (4.4)

where RPN is the reference pattern noise, NV is the number of selected slices
and n is the noise component of the CT-Scanner slice. This RPN represents
the fingerprint of the given CT-Scanner. Fig. 4.2 illustrates an example of

slice from a 3D image of phantom that is acquired by a Siemens

4.2.3 Decision by correlation

Correlation is the final step of this identification method to determine the
source acquisition device. We applied the normalized correlation as a simi-

larity measure between a CT-Scanner fingerprint and the noise component of
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Figure 4.2: a) Example of an original slice (512x512) of a 3D image of phantom

from Siemens device, b) Its denoised component, c¢) Its noise component.

any tested slice. The normalized correlation is calculated as follows:

(n@ —n@).(RPN — RPN)

corr(ngy, RPN) = ’
e ) In@ — n@ll|IRPN — RPN||

(4.5)

where n;) is the average value of n, and RPN is the average value of RPN.
To authenticate the source CT-Scanner of any tested slice, it should have the

maximum correlation value among the different CT-Scanners RPN.

4.2.4 Experimental results

In this section we present the experimental results regarding the CT-Scanner
identification method. In Section. 4.2.4.1 we preview the data we used in our

experiments, and in Section. 4.2.4.2 we discuss the achieved results.

4.2.4.1 Data description

Experiments were applied on eight 3D images from 3 different CT-Scanners:
Siemens 1, Siemens 2 and General Electrict. These images are coded in 16
bits and have similar acquisition parameters (Beam energy is (120, 140) Ky,

pitch value is around 1 and the slice thickness is 3 mm). Fig. 4.3 illustrates

!From the two hospitals "CHU of Montpellier" and "Clinique du Parc" at Montpellier.
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an example of 3D image of a phantom of Siemens 1, while Fig. 4.4 illustrates
an example of 3D image of a phantom of Siemens 2, and Fig. 4.5 illustrates

an example of 3D image of a phantom of General Electric.

@ 5 L.l

Z slice (b) X slice )Y slice

Figure 4.3: Siemens 1: three slices of a 3D image of a phantom

@ i EJ

7 slice ) X slice )Y slice

Figure 4.4: Siemens 2: three slices of a 3D image of a phantom

Yy

A A‘-

) Z slice ) X slice )Y slice

Figure 4.5: General Electric: three slices of a 3D image of a head

We used three 3D images of a phantom from Siemens 1, three 3D images
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of a phantom from Siemens 2 and two 3D images of a skull from General
Electric. Each 3D image is composed of 100 slices, slice size is 512x512 pixels

as illustrated in Table. 4.1.

Property /Model Siemens 1 Siemens 2 GE
Content phantom phantom skull
Nb of images 3 3 2
Nb of slices 300 300 200
Nb of slices of RPN | 120 120 120
Nb of tested slices 180 180 80

Beam Energy

(120, 140)kv

(120, 140)kv

(120, 140)kv

Pitch Value 1 1 1

Size (pixels) 512x512 512x512 512x512
Bits per pixel 16 16 16

Slice thickness 3mm 3mm 3mm
Pixel size 1lmm 1lmm 1lmm

Table 4.1: Characteristics of the experimental images.

4.2.4.2 Results and discussion

These experiments were applied on CT-Scanner slices. From each device,
we selected randomly a group of 120 slices to build the RPNs following the
procedure described in Section 4.2.2. Fig. 4.6 illustrates the three extracted
RPNs regarding each device separately. In the RPNs, we can notice that some
high frequency artifacts are caused by high frequency edges.

To verify the identification method, we selected a group of slices regarding
each device in order to authenticate the source CT-Scanner information: 120

slices from the General Electric, 180 slices from the Siemens 1 and 180 slices

from the Siemens 2. We extracted the noise component of each tested slice,
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(b)

Figure 4.6: Example of the reference pattern noise from: a) the General

Electric, b) The first Siemens device, ¢) The second Siemens device.

then we computed the normalized correlation to measure the similarity be-

tween each tested slice and each CT-Scanner RPN according to equation 4.5.

From plots in Fig. 4.7, Fig. 4.8 and Fig. 4.9, some correlation values are
classified comparing to the other ones. These correlation values represent an
indicator to the source CT-Scanner. As we defined, the correlation of a tested

slice has a higher value with its device RPN.

The plot in Fig. 4.7 illustrates the correlation between three RPNs of three
CT-Scanners (Siemens 1, Siemens 2 and General Electric) and the 180 slices
from Siemens 1. The vertical axis represents the correlation value, and the
horizontal one represents the slice number. From this plot, we can notice that
correlation between the RPN of Siemens 1 and the tested slices of Siemens 1
has a quite higher values than the other ones. Almost all of these correlation
values are more than 0.1, while all the other correlation ones are less. These
correlation values represent the high similarity between this device RPN and
the tested slice. However, we can consider the value 0.1 as a threshold that
classifies the tested slices. We can decide that each tested slice has a correla-
tion value superior to 0.1 was acquired by this device, otherwise, it was not.

We can see the identification percent in Table. 4.2. The same remark can be
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Figure 4.7: Correlations between the tested slices of Siemens 1 and the refer-

ence noise pattern regarding each device.
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Figure 4.8: Correlations between the tested slices of Siemens 2 and the refer-

ence noise pattern regarding each device.
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Figure 4.9: Correlations between the tested slices of General Electric and the

reference noise pattern regarding each device.

applied on the plots of Fig. 4.8 and Fig. 4.9.

Siemens 1 | Siemens 2 | GE
Siemens 1 | 95.5 % 3.0 % 5.0 %
Siemens 2 | 4.0 % 97.0 % 0
GE 0.5 % 0 95.0 %

Table 4.2: Identification accuracy

Table. 4.2 shows up the classification accuracy, when we correlated 180
slices from Siemens 1, 180 slices from Siemens 2 and 80 slices from General

Electric with each device reference noise separately:

e 95.5 % of tested slices from Siemens 1 are classified correctly, while 4 %
of them are classified as acquired by Siemens 2, and the rest 0.5% are

classified as acquired by General Electric.

e 97 % of tested slices from Siemens 2 are classified correctly, while 3 %
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Figure 4.10: (a) Slice from a 3D image of a head from GE, (b) Its noise

component.
of them are classified as acquired by Siemens 1.

e 95 % of tested slices from General Electric are classified correctly, while

5 % of them are classified as acquired by Siemens 1.

As the current CT-Scanner slices contain some anatomical parts. These
anatomical borders create a signal in the noise slice. This signal exists in the
form of artifacts in the area around the borders of the original slice. Fig.4.10
illustrates an example of one slice of a 3D image of a head from a (General
Electric device and its noise component.

These artifacts affect the identification performance and may turn it to the
content level. Therefor, we have to differentiate the noise from high frequency
artifacts. In the Section 4.3, we are going to improve the denoising algorithm
by including a correlation map as suggested in [Chan 2013]. This correlation
map takes into account the reliability of the noise computation at each pixel

of the CT-Scanner slice. We are going to see also how to eliminate the high
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frequency artifacts from the noise slice.
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4.3 Improving sensor noise analysis

In this section, we present some improvements on the CT-Scanner identifi-
cation method that was presented in Section 4.2. These improvements are
basically composed of two parts. First part, enhancing the RPN extraction.
Second part, building a correlation map that will associate to the RPN. This
correlation map will give a weighting factor for each pixel of CT-Scanner test-
ing slices. Then, we use the normalized correlation to measure the similarity
also, but based on the correlation map. The source CT-Scanner will be still
identified based on the highest correlation value. Fig. 4.11 illustrates the
improved method of CT-Scanner identification, where we extract the RPN
and the correlation map for each studied CT-Scanner, and they in their turn

will associate to the correlation computation. In Section 4.3.1 we present

CT-Scanners

3D images

________________

| Retarance
; Patfern Noise

: Conelation Map

Figure 4.11: Improved identification method.
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the method of noise extraction and correction regarding the new improved
method. Then, in Section 4.3.2 we explain how to associate a correlation
map to the new extracted RPN, and the decision of device identification is
presented in Section 4.3.3. Finally, the experimental results are presented in

Section 4.3.4.

4.3.1 Noise extraction and correction

To extract the noise component of CT-Scanner slice, we subtract the denoised
slice from the original one based on the equation 4.3. But, in addition to the
noise residual, we have another signal or component that remained in the
high frequency. This signal exists as artifacts in the area around the edges
of the original slice. In order to remove this kind of artifacts, we add a noise
correction step. This step aims to detect the edges that exist in the original
slice. Then, to mask them in the noised one, we apply an edge detection based

on [Nitzberg 1993] as follows:
e Blur the original slice to remove the noise residual and high frequency
information.
e Compute the gradient of each pixel of the blurred slice.
e Compute the norm of the gradient for each pixel.
e Finally, threshold the norm slice to extract the maximum local values
that represent the edge mask.

Finally, we apply this mask on the previous noise component computed from
equation 4.3:

n(i, 7) = nn(i, 7) x mask(i, j), (4.6)
where n is the pure noise component, nn is the normal noise component
including the artifacts, and mask is the edge mask. As a result, we have the

pure noise component without any type of artifacts.
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(a) (b) (c)

Figure 4.12: a) Example of a slice from CT-Scanner from Siemens, b) Its noise

component, ¢) Its noise component without edges.

In Fig.4.12, we can see an example of a slice from a 3D image of phantom
that was acquired by a Siemens device, where (a) is the original slice, (b) the
normal noise component with artifacts, and (c¢) is the pure noise without any

artifact.

4.3.2 Associating a correlation map to the RPN

The basic goal of the CT-Scanner RPN, as we already explained, is to pro-
vide an approximation of the CT-Scanner sensor noise output, since, the CT-
Scanner acquisition system does not give a permission to access the raw data of
the sensor output. We have seen in the section 4.2, that this approach removes
the image content and keeps the noise only. Moreover, applying the average
operator to extract the RPN will decrease the low frequency components and
delete the random noise from the final RPN. Basically, the correlation map is
built based on the same slices that were used to extract the CT-Scanner RPN.
After selecting a group of slices, a CT-Scanner RPN is built according to Sec-
tion 4.4. The selected slices belong to different 3D images, and the average is
applied regarding 7’ axis. In some slices, we removed artifacts from the noise

residual. Consequently, according to pixel position, in some slices, the pixel
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may belong to an edge and its information has been removed. So, this pixel
position has lost some information regarding the 'Z’ directional axis, while
another pixel position did not lose any information since it does not belong
to an edge. Based on the rule that non-edge pixel is more important that the
edge one, we built a correlation map as suggested in [Chan 2013|. The cor-
relation map gives information about the importance of each pixel according
to its position. After selecting the RPN slices, we built the correlation map,

where the pixel value represents its frequency as an edge in these slices:

map(i,j) = Z maskr (i, 7), (4.7)

I€RPNslices

where map represents edge frequencies and mask; is the edge mask of I. In
order to normalize the correlation map, we convert the values of the correlation
map into percentage values, we inverted the map values and divided each pixel
value by the maximum one. So each pixel value represents its importance
regarding its frequency as an edge. The pixel with the highest edge frequency
has a low importance and so it takes the value of 0, while the pixel with the

lowest edge frequency has a high importance and it takes the value 1:

Inv(map(i, j))
max(map)

: (4.8)

corr_map(i, j) =

where corr_map is the final correlation map, Inv() is the inversion factor and

max() is the maximum value of map.

4.3.3 Decision by correlation

The identification decision is also based on the similarity measurement of
normalized correlation. The normalized correlation is computed between the
noise component of a tested slice and the RPN of each given CT-Scanner.
This normalized correlation is computed based on a weighting factor of the

correlation map. So, we apply the correlation map on the RPN to extract the
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—_——

weighted reference pattern noise RPN:
RPN(i,j) = RPN(i, j) x corr_map(i, j), (4.9)

where RPN is the reference pattern noise and corr _map is the correlation
map. We apply also the correlation map on the noise component to extract

the weighted noise component n:

n(i,7) = n(i,5) X corr_map(i, j), (4.10)

where n is the pure noise component and map is the correlation map. Finally,

the correlation is:

-~ Ni _:Z' . Eﬁva—ﬁ
corr (i), RPN) = (o) = o). )

_ —~ _— (411)
1@ — n@lllRPN — RPN||

—_—

where 71 in the average value of 7, RPN is the average value of RPN, and i is
the slice number, the correlation is applied on the unmasked pixels only. The
source CT-Scanner is identified based on the highest correlation value with

its RPN.

4.3.4 Experimental results

In this section we present the experimental results regarding the improved
CT-Scanner identification method. In Section. 4.3.4.1 we present the data
we used in our experiments, and in Section. 4.3.4.2 we discuss the achieved

results.

4.3.4.1 Data description

The experiments were applied on the same devices that were used in Sec-
tion 4.2.4, but using more images. We used 40 3D images of 3600 slices

from three different CT-Scanners: Siemens 1, Siemens 2 and General Electric.
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These images have similar acquisition parameters as presented in Section 4.2.4.
Fig. 4.13 illustrates an example of 3D image of a phantom of Siemens 1, while
Fig. 4.14 illustrates an example of 3D image of a phantom of Siemens 2, and

Fig. 4.15 illustrates an example of 3D image of a phantom of General Electric.

rY 1

(a) Z slice (b) X slice

Figure 4.13: Siemens 1: three slices of a 3D image of a phantom.
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Figure 4.14: Siemens 2: three slices of a 3D image of a phantom.
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Figure 4.15: General Electric: three slices of a 3D image of a phantom.
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We used 12 3D images of phantom from Siemens 1, 12 3D images of phan-
tom from Siemens 2 and 16 3D images of phantom from General Electric.

Each 3D image is composed of almost 100 slices and the size of each slice is

512x512 as illustrated in Table 4.3.

Property /Model Siemens 1 | Siemens 2 | GE
Content phantom phantom phantom
Nb of images 12 12 16

Nb of slices 1200 1200 1200
Size (pixels) 512x512 512x512 512x512
Bits per pixel 16 16 16

Beam Energy

(120,140)kv

(120,140)kv

(120,140)kv

Pitch value (0.5, 1) (0.5, 1) (0.5, 1)
Slice thickness 3mm 3mm 3mm
Pixel size 1lmm lmm lmm
Nb of slices of RPN | 200 200 200
Nb of tested slices 1000 1000 1000

Table 4.3: Characteristics of the experimental images.

4.3.4.2 Results and discussion

We apply our experiments on CT-Scanner slices. We select randomly 200 slices
from each CT-Scanner to build the CT-Scanner RPN. Fig. 4.16 illustrates the
RPNs of the three CT-Scanners. The correlation map is built also using the
same slices that are involved in the RPN creation.

To build the correlation map, each pixel of the correlation map represents
the frequency of its position as an edge in the selected slices. Fig. 4.17 illus-

trates the correlation maps of the three CT-Scanners. And the weighted RPN
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(a) RPN of S1 (b) RPN of S2 (c) RPN of GE

Figure 4.16: The reference pattern noise of each device.
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(a) Map of S1 (b) Map of S2 (¢) Map of GE

Figure 4.17: The correlation map of each device.

(a) RPN of S 1 (b) RPN of S 2 (c) RPN of GE

Figure 4.18: The three RPNs according to equation. (5.7).
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of each CT-Scanner according to the equation 4.9 is illustrated in Fig. 4.18. In
General Electric acquisition system, the acquired slice information is centered
in a circle of diameter equal to the slice height or width. Therefor, we build
a circle mask with a size equal to that of General Electric slice. In order to
keep the same process region over all slices of all CT-Scanners, we applied
this mask on all the processed slices. Finally, we calculated the normalized
correlation between the noise component of the tested slices and the RPN of
each device. This correlation depends on the correlation map as we declared
in equations 4.9, 4.10 and 4.11.

The plots in Fig. 4.19, Fig. 4.20 and Fig. 4.21 represent the correlation
between RPNs of three CT-Scanners and tested groups from each one. We can
notice that correlation values between the tested slices and its corresponding
source RPN are classified as higher values.

In the plot of Fig. 4.19 we can visualize the correlation between the RPNs
of three CT-Scanners (Siemens 1, Siemens 2 and General Electric) and 1000
tested slices from Siemens 1. The horizontal axis represents the tested slice
number and the vertical one represents the correlation value. It is clear in
this plot that correlation between the tested slices and the RPN of Siemens 1
has higher values in comparison to the other ones. This correlation forms an
evidence of the relation between these tested slices and its source RPN. So,
we can decide that Siemens 1 is the source CT-Scanner of these tested slices.
We can notice the same thing regarding the plots in both of Fig. 4.20 and
Fig. 4.21.

Table 4.4 illustrates the identification accuracy of correlation between

RPNs of the three CT-Scanners and 1000 tested slices from each one:

e 943 slices of Siemens 1 are classified correctly as acquired by Siemens 1,
while 26 slices are classified as acquired by Siemens 2 and 31 slices as

acquired by GE.
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Tested Slices of Siemens 1

Figure 4.19: Correlation between 1000 tested slices of Siemens 1 and the RPN

of each device.

Tested Slices of Siemens 2

Figure 4.20: Correlation between 1000 tested slices of Siemens 2 and the RPN

of each device.
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Figure 4.21: Correlation between 1000 tested slices of GE and the RPN of

each device.

e 952 slices of Siemens 2 are classified correctly as acquired from Siemens
2, while 23 slices are classified as acquired by Siemens 1 and 25 slices as

acquired by GE.

e 1000 slices of GE were classified correctly as acquired from GE.
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Siemens 1 | Siemens 2 | GE

Siemens 1 | 94,3 % 23 % 0%
Siemens 2 | 2,6 % 95,2 % 0%
GE 3.1 % 2.5 % 100 %

Table 4.4: Identification accuracy.
4.4 Denoising algorithm

Based on the work proposed in [Lukas 2006], we decide to use a wavelet-based
Wiener filter [Choi 1998] since the noise component extracted this filter con-
tains the minimum amount of scene traces (area around the edges in the noise
image). Although that wavelet-based Wiener filter [Jacob 2004]| provides good
results, these results are obtained from the digital images which have quite
smaller range of values than this in medical images. That was our motivation
to apply some improvements on the CT-Scanner identification method in or-
der to minimize the scene or anatomical traces that rest as artifacts in the
high frequency. In this section, we present the wavelet-based Weiner denoising
filter and its different parameters.

In the Wavelet domain, we applied a Wiener filter |[Mihcak 1999,
Kazubek 2003]. Basically, this algorithm is composed of two parts, the local
variance estimation of the wavelet components in the first part and denoising
of these components using Wiener filter [Jerhotova 2011] in the second one

as follows:

e We compute four levels of wavelet decomposition [Burrus 1997]. In each
level, we mark out the three high frequency sub-bands that are horizon-
tal, vertical and diagonal. For four levels of wavelet decomposition with
three sub-bands in each level we have 12 sub-bands for each processed

image.



64

Chapter 4. CT-Scanner identification based on sensor noise
analysis

e For each wavelet sub-band, we use four levels of the pixel neighborhood.

From the first boundary neighbors by a square size of (3x3) to the fourth
boundary ones by a square size of (9x9), we apply the local variance

estimation:

A2 1 .
63y (i,7) = max | 0, W2 Z (X?(i,4) —ap) |, (4.12)
(4,5)eW W
where W € {3,5,7,9} refers to the neighborhood level, X is the wavelet
sub-band. oy is an initial integer constant value that we tuned manually

oo € [1,6], in our experiments we selected the value of 3.

Among the four previous values regarding the four levels of neighbor-

hood, we select the minimum value as the estimated variance:

&*(i, j) = min (03(i, ), 05(i, §), 07 (i, 5), 05 (3, 5)) - (4.13)

Denoise the wavelet sub-bands using Wiener filter, that is used to filter
out noise that has corrupted a signal:

6%(i, j)

Xden(zhj) :X(Z’J)W7 (414)
’ 0

where X is the wavelet sub-band.

Apply the inverse wavelet transformation on the denoised wavelet sub-

bands to get the denoised component F'(s) of the original image s.

4.5 Conclusion

In this chapter, we proposed an analysis of CT-Scanner identification problem.

Based on the state of the art, we presented our method to authenticate the C'T-

Scanner images and, to determine its source acquisition device. We extracted

the CT-Scanner fingerprint from its output reconstructed images, then we
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verified its presence in any new tested slice in order to validate its source. We
can notice two advantages of extracting the CT-Scanner fingerprint in such

way:

e [t does not require an access to the sensor output, since we apply the

identification steps on the reconstructed image directly.

e It can be applied on whatever model of CT-Scanner. For any new CT-
Scanner model, we can build its RPN and include it in the identification

dataset.

Since noise exists in the high frequency, the results of denoising method
keep some high frequency artifacts in addition to noise. This fact encourages
us to propose new improvements on the CT-Scanner identification problem
which can keep the noise information only, enhance the identification perfor-
mance and reduce the false alarm of identification. Our proposed improve-
ments consist of masking the edges information in the noise slices and building
a correlation map that increases the importance of unmasked parts and in-
creases the identification accuracy from the other hand. Finally, we were able
to identify the CT-Scanner based on its reconstructed slices. In Chapter 5,
we are going to provide new solutions for CT-Scanner identification prob-
lem based on the specificity of medical images, and present a new fingerprint

conception.
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5.1 Introduction

We presented in Chapter 4 our first analysis of CT-Scanner identification prob-
lem. The proposed methods were based on the identification of digital camera.
In this chapter, we present new methods for CT-Scanner identification based

on the specificity of CT-Scanner images.

CT-Scanner images are reconstructed in three dimensions [Hu 1999).
Based on this principle, we propose a new fingerprint concept that takes into
account, the three dimensions of the CT-Scanner image. Regarding each di-
mension, we build a new identifier. This identifier is composed of an RPN
and a correlation map. To identify the source of a tested slice, we measure
the similarity between its noise component and each dimension identifier of
each device. So, the CT-Scanner fingerprint consists of three dimension iden-
tifiers. This method allows the identification of both the CT-Scanner and the

directional axis.

Another new concept is presented in this chapter, which is a separation into
intensity "layers". We separate the CT-Scanner slice into three layers which
correspond to the bone, the soft tissue and the air [Bui 2009|. Consequently,
each C'T-Scanner has three layer RPNs that constitute its fingerprint. To test
any new slice, we measure the similarity between the noise component of each
layer and its corresponding RPN of each device. The new experiments are

applied on real data of patients.

In Section 5.2 we present the new CT-Scanner fingerprint of three di-
mension identifiers, and its effect on CT-Scanner identification. Then, in
Section 5.3 we introduce the three layer RPNs fingerprint and the new iden-

tification method. Finally, we conclude our work in Section 5.4.
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5.2 Extending the RPN to the different image
axes

Since the CT-Scanner produces three dimension images, we propose to build
an identifier along each axis. The traditional fingerprint we have proposed in
Section 4.3 characterizes the noise only along 'Z’ axis, that is the reconstruc-
tion axis of the CT-Scanner. But in case of attacking the original image by a
simple rotation around X’ or Y’ directional axis, the previous RPN will not
work anymore, because the noise along 'Z’ axis does not take the same form
as the noise along "X’ or 'Y” axes. However, the RPN which characterizes the
noise along one axis, cannot characterize it along another one. It cannot even
be used to authenticate the source information of slices which are not on the

same axis.

Y

Reconstruction axis Z Slice X Slice Y Slice

(a) (k) (<) (d)

Figure 5.1: Noise form as a function of the directional axes.

Fig. 5.1 illustrates the form of generated noise along the reconstruction
axis that is generally 'Z’ axis. This generated noise takes a radial form along
"7’ axis according to the spiral or helical acquisition as presented in section 2.2.
Consequently, it takes a horizontal cylinder form along "X’ axis, and a vertical
cylinder one along 'Y’ axis. The proposed method provides a new fingerprint

concept. It consists of extracting a dimension identifier for each directional
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Figure 5.2: CT-Scanner identification method.

axis separately. Fig. 5.2 illustrates the new C'T-Scanner identification method.
In Section 5.2.1 we explain how to build a dimension identifier for a directional
axis of a CT-Scanner. Then, we present in Section 5.2.2 how the identification

criteria works. Finally, the experimental results are provided in Section 5.2.3.

5.2.1 Dimension identifier

The dimension identifier represents a unique fingerprint of the CT-Scanner
regarding the directional axis, so it can be used to detect the directional axis
of an unauthenticated tested image. As we have a 3D image, we can build an
identifier for each directional axis: X’ identifier, 'Y’ identifier and ’Z’ identifier
as illustrated in Fig. 5.3. Each one of these identifiers is consisted of an RPN
that characterizes the noise on this directional axis and a correlation map.
Fig. 5.3 illustrates the applied schema on each studied CT-Scanner. Then,
based on Section 4.3.1 and Section 4.3.2 we build the RPN and the correla-

tion map of each dimension identifier along each directional axis. The same
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Figure 5.3: Identification method of each directional axis.

extraction schema that illustrated in Fig. 5.3 is applied along each dimension.

5.2.2 Identification by correlation

Now, for any new test slice, we can get two kinds of information. Firstly, its
acquisition CT-Scanner, and secondly, its acquisition directional axis. The
correlation step is applied on the three dimension identifiers of each CT-
Scanner. This correlation is used to measure the similarity between a test
slice and the CT-Scanner RPN. This correlation is calculated depending on
the correlation map using the equation 4.11. The highest correlation value

represents our guide to the source CT-Scanner and the directional axis.

5.2.3 Experimental results

In this section we present the experimental results using three dimension

RPNs. 1In Section 5.2.3.1 we explore the used images in the experiments
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and its characteristics. Then, in Section 5.2.3.2 we give our results and some

discussions.

5.2.3.1 Data description

Experiments were applied on the same devices presented in Section 4.3.4 but
with much more images. The three CT-Scanners are Siemens 1, Siemens 2
and General Electric. From each one we selected 10 3D images, each 3D
image consists of 512 slices. A total number of 15,360 slices from the three
CT-Scanners were used. All images have quite similar acquisition parameters
(Beam energy: (120, 140) Kv, Pitch value: (0.5, 1), Reconstruction: (soft,

hard)). Table 5.1 illustrates the characteristics of experimental images.

Siemens 1 | Siemens 2 | GE
Content phantom phantom phantom
Nb of images 10 10 10
Nb of slices 5,120 5,120 5,120
Size (pixels) 512x512 512x512 512x512
Bits per pixel 16 16 16
Slice thickness Imm Imm Imm
Pixel size Imm Imm 1lmm
Nb of slices of RPN | 500 500 500
Nb of tested slices 500 500 500

Table 5.1: Characteristics of the experimental images.

We have initially the reconstructed images on 'Z’ directional axis. We applied
a resampling on 'Z’ directional axis to create isotropic images of 1mm, then we
reformatted it on X", and Y’ to create the same image on the three directional

axes.
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According to each directional axis, 100 slices were selected randomly from
each image of each CT-Scanner. A totality of 1,000 slices according to each
directional axis of each device were selected. 500 slices were selected to build
the dimension identifier, and the other 500 slices were used to evaluate the

identification performance.

5.2.3.2 Results and discussion

In Fig. 5.4 we can see an example of an original slice from a 3D image of
phantom which is acquired by Siemens 1, slices from the three directional

axes are illustrated. Fig. 5.5 illustrates the noise component of these slices.

In Fig. 5.5, it is clear that in addition to the noise, there are some high
frequency artifacts that are result of edges. We masked the edges to remove
these artifacts as we already explained in Section 4.3.2 and illustrated in
Fig. 5.6 and Fig. 5.7.

To extract the RPN of each directional axis, we averaged 500 selected
slices that contain noise only. Fig. 5.8 illustrates the three directional axes
RPN of Siemens 1. The edge mask of the same selected slices is used to build
the correlation map of each directional axis. As we mentioned before, the
pixel value represents its position frequency as an edge in all slices. Fig. 5.9
illustrates the correlation maps of the three directional axes of Siemens 1. To
measure the similarity between tested slices and different dimension identi-
fiers, we calculated the normalized correlation between tested slices and the
three dimension identifiers of each device. Based on the correlation map of
each dimension identifier, we calculated the correlation between the noise com-
ponent of the tested slice and the reference pattern noise. This correlation is
computed directly, where there is almost no CPU time consumed.

Fig. 5.10, 5.11 and 5.12 illustrate the correlation values between each tested
slice of each device and the dimension identifier of each one. In each plot,

the "X’ axis represents the tested slice number and the Y’ axis represents
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Figure 5.4: Original slices from Siemens 1 (X directional axis, Y directional

axis, Z directional axis).

Figure 5.5: Noise component from Siemens 1 (X directional axis, Y directional

axis, Z directional axis)

3 1O

Figure 5.6: Edge mask from Siemens 1 (X directional axis, Y directional axis,

7 directional axis).
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Figure 5.7: Pure noise component without traces from Siemens 1 (X direc-

tional axis, Y directional axis, Z directional axis)

Figure 5.8: RPN of Siemens 1 (X directional axis , Y directional axis, Z

directional axis)

Figure 5.9: The correlation map from Siemens 1 (X directional axis , Y direc-

tional axis, Z directional axis).
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the correlation value. We can notice that the correlation values between the
tested slices and the dimension identifier of the same device and the same
directional axis are always the highest.

From Fig. 5.10 and Table. 5.2, we notice that:

e (a) The best identification accuracy on ’X’ axis is registered for Siemens
1, where 92.2 % of the tested slices are correctly classified as acquired

from Siemens 1, and their directional axis is correctly identified as 'X’.

e (b) 88.6 % of the tested slices are classified correctly as acquired from

Siemens 2, with correct directional axis.

e (¢) 73 % of the tested slices are classified correctly as acquired from

General Electric, with correct directional axis.

Moreover, most of the tested slices on "X’ axis that were not classified correctly
in each tested group are associated with the same directional axis of another

device:

o 5.8% of the tested slices from Siemens 1 on ’X’ directional axis are

associated with the X’ axis of the Siemens 2.

e 9% of the tested slices from Siemens 2 on X’ directional axis are asso-

ciated with the X’ axis of the Siemens 1.

o 6.6% of the tested slices from General Electric of X’ directional axis are

associated with the X’ axis of the Siemens 2.
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Test 51X

(a) Test slices from Siemens 1 and all the dimension identifiers.

Test 52 X
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(b) Test slices from Siemens 2 and all the dimension identifiers.

Test GE2 X

-0,02

-0,04

(c) Test slices from General electric and all the dimension identifiers.

Figure 5.10: Correlation between tested slices of ’X’ directional axis from the

three CT-Scanners and the three dimension identifiers of each one.
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Test51Y

(a) Test slices from Siemens 1 and all the dimension identifiers.

TestS2 Y

(b) Test slices from Siemens 2 and all the dimension identifiers.

Test GE2 Y
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(c) Test slices from General Electric and all the dimension identifiers.

Figure 5.11: Correlation between tested slices of 7Y’ directional axis from the

three CT-Scanners and the three dimension identifiers of each one.
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TestS17

(a) Test slices from Siemens 1 and all the dimension identifiers.
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(b) Test slices from Siemens 2 and all the dimension identifiers.
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(c) Test slices from General Electric and all the dimension identifiers.

Figure 5.12: Correlation between tested slices of "7’ directional axis from the

three CT-Scanners and the three dimension identifiers of each one.
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Ref\ Test SIz SIX SlY s2Z S$2 X s2Y GEZ GEX GEY
Sz 92,2 % [¢] 0 9% 0 0 34% 0
SIX 0.2% 100 % 0 02% 0 0 1.8 % 0
Sly 0 0 100 % 02% 0 0 3% 0

527

s2X

s2Y

GEZ

GEY

58%

0,6 %

0,4 %

02%

6.6%

08%

42%

3%

22%

99,6 %

© © © © o o o o

100 %

Table 5.2: Identification accuracy.

From Fig. 5.11 and Table. 5.2, we notice that:

The identification accuracy is 100 %, where the source CT-Scanner is

identified correctly for all the tested slices of the first Siemens and the

second one, the Y’ directional axis is identified correctly also.

99.6 % of tested slices are classified correctly as acquired from General

Electric, and its directional axis is Y.

From Fig. 5.12 and Table. 5.2, we notice that the identification accuracy is

100 %, where the source CT-Scanner is identified correctly for the three CT-

Scanners on 'Z’ directional axis. From Table. 5.2 also, we can notice that the

identification on Y’ and 'Z’ axis, generally, is more accurate than 'X’ axis.
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5.3 Using an RPN of different intensity layers

The proposed identification method is based on extracting the CT-Scanner
fingerprint. For each studied CT-Scanner, we build an RPN, this RPN is com-
posed of three separated intensity layers. Using two thresholds [Sezgin 2004],
we separate the studied slices into three intensity layers: air, soft tissue and
bone. Then, regarding each layer, we extract the noise component and build
its corresponding RPN. Finally, a correction step is applied on each layer RPN
to remove any traces that left in the high frequency. Figure 5.13 illustrates

the method overview. In Section 5.3.1 we explain how to separate into layers.

CT-Scanners

CT-Images

CT-Separated layers

4

----------------

1
1
: : [}
1
[}
[}
[}
------- milmla Conelation SIECE] RN RN R ol  Correlation 1
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Figure 5.13: Identification method overview.

Then, we provide the noise extraction in Section 5.3.2, and the RPN extraction
in Section 5.3.3. The new identification criteria is presented in Section 5.3.4.

Finally, the experimental results are discussed in Section 5.3.5.
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5.3.1 Separation into layers

The objective is to separate the CT-Scanner images into more homogeneous
layers. Therefor, we can avoid any high frequency variation, that distorts noise
extraction and analysis. Then we propose to decompose the CT-Scanner slice
into 3 slices defined by 3 intensity layers: high-intensity areas that are the
bones or contrast-enhanced anatomical structures, low-intensity areas that
contain air-filled anatomical structures like lungs and average-intensity areas
that correspond to soft tissue like muscle or fat. Then, we separate each

studied slice into three layers using three ranges of intensities as follows:

A, g) = s(i,5)|s(i,j) € |a, 0],
T(i,j) = s(i, )|s(i,4) € b,d], (5.1)
B(i,j) = s(i,5)[5(i, ) € e, d],

where s is a CT-Scanner slice, A is the layer of air, T is the layer of soft
tissue and B is the layer of bone. This separates all the intensities to the
air value range [a,b|, tissue value range |b,c] and bone value rang |c,d| re-
spectively. These thresholds are defined based on the absolute Hounsfield
scale [Hounsfield 1980] and were assessed over our experiments.

Based on the CT-Scanner noise model presented in Section 4.2.1, and equa-

tion 5.1, we can extend the form of the CT-Scanner image:
I=B+Qp.B+T+Qr.T+A+ Qyu.A+ EN. (5.2)

With I = B, I, =T and I3 = A, we have:

I=> (I;+Q;.I;)+EN, (5.3)

J

where: j € {A, T, B}.
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5.3.2 Noise extraction

The goal is to extract the noise component of each layer separately. We apply
a denoising filter F'() described in Section 4.4 on the studied slice s;. Then,
we subtract the result from the original slice to extract the noise component

based on equation 5.3 as follows:
rn; = s; — F(s;), (5.4)

where j € {A,T, B}, rn; is the preprocessed noise component. We noticed
some additional low frequency by-products that rest with the noise, that are
a result of denoising. To remove such kind of low frequency by-products from
the studied slice, we apply the original layer binary mask B; to keep this layer
information, and to extract the final noise component n; of this layer. This

helps to avoid any low frequency by-products and keeps noise only:

?7,]' = Bj.rnj. (55)

5.3.3 Reference Pattern Noise

Here we apply the traditional RPN extraction method over the three separated

layers, as follows:

1. Select a group of images, these images cover almost all the anatomical
parts of the body. The image variety is an important point in build-
ing the RPN, in order to include all the noise variations regarding the

different anatomical parts.
2. Separate the image slices into three layers, according to Section 5.3.1.

3. Extract the noise component of each layer, according to Section 5.3.2.
The same problem of the high frequency artifacts is raised up here,

where some traces are existed with the noise. The traces will increase
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the false alarm of device identification and convert the identification to
the content level as we already explained. Unlike the previous methods,
we do not mask information in the high frequency, because the high
frequency information is separated into its special layer, and is used
to support the identification decision. So, we move to the frequency
domain [Annadurai 2007] and apply a low pass wiener filter. This filter
in its turn, removes such kind of artifacts, by suppressing its peaks and

keep the enhanced RPN signal only.

4. Finally, we apply an average operation on the selected slices along each

layer, to extract an RPN from each one:

N.
1 J

RPN; = + > nga, (5.6)
J =1

where j € {A,T, B}, i is the slice number, N; is the number of slices

used in RPN creation and n; is the noise component.

5.3.4 Identification criteria

The device identification is based on the similarity measure, where the noise
of tested slice Ny should have a maximum similarity with RPN of the source
CT-Scanner. The similarity between N, and RPN is measured by the Peak-
to-Correlation Energy (PCE), that is a more stable similarity metric than
the normalized correlation and does not relate to the slice size [Goljan 2009,
Goljan 2008a, Alfalou 2010]. PCE represents the ratio between the correlation
peak height of the correlation plane, and the total energy of this plane, where

the correlation plane is the cross-correlation between the two signals:

E,(N;, RPNj)

PCE(N,, RPN)) = - (N, RPN
cp ) 7

(5.7)

where N; is the noise component of the tested slice, RPN, is the RPN of
the tested layer according to the tested device, j € {A, T, B}, E, is the peak



86 Chapter 5. New Directions for CT-Scanner Identification

height of the correlation plane and FE, is the total energy of the correlation
plane.

The PCE between the noise component of each tested separated layer and
the RPN of the same layer is computed over all studied devices. To decide
whether a slice belongs to a specific CT-Scanner, it should have the majority of
its layers (in our proposed method, at least 2 layers out of 3) to be considered

as coming from the same device.

5.3.5 Experimental results

In this section we present the experimental results regarding the three layer
RPNs-based CT-Scanner identification. In Section 5.3.5.1 we preview the im-
ages used in the experiments and their characteristics. Then, in Section 5.3.5.2
we present the dataset preparation. Finally, in Section 5.3.5.3 we give our re-

sults and some discussions.

5.3.5.1 Data description

The experiments were applied on 60 3D images from new three different CT-
Scanners (two Siemens S1, S2 and one General Electric GE). These images
represent now real data of patients. A total number of 20,939 slices was
used to build the RPN of the three devices and to validate the identification
accuracy. These images cover almost all the anatomical body parts (head,
abdomen, thorax, spine, neck, pelvic and chest). All of them have quite
similar acquisition parameters (Beam energy: (100, 120, 140) Kv, Pitch value:
(0.5, 1), Reconstruction: (soft, hard)). Table 5.3 illustrates the properties of

the experimental images.
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S1 S2 GE
Nb of 3D images 20 20 20
Nb of slices 7,572 7,279 5,088
Size (pixels) 512x512 | 512x512 | 512x512
Bits per pixel 16 16 16
Nb of slices of RPN | 3,363 3,756 2,092
Nb of tested slices 4,209 4,523 2,996

Table 5.3: Characteristics of the experimental images.

5.3.5.2 Dataset preprocessing

We separated each studied slice from our dataset into three layers. The sep-
aration threshold values were experimentally tested to validate its range,
where the range values of air: [-990,-200], tissue: ]-200,+200] and bone:
]+200,+1500]. All the values below -990 or above the 1500 were ignored.
Values below -990 are not important for our application, and the values above
+1500 contain streak acquisition artifacts [Boas 2012|. Figure 5.14 illustrates
an example of an original CT slice of a head and its three separated layers, it is

from a 3D volume that was acquired by a Siemens 1. Then, we extracted the

(a) Original (b) Air (c) Tissue (d) Bone

Figure 5.14: Original slice of a head and its three layers.
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noise component of each slice, as we explained in Section 5.3.2. Figure. 5.15
illustrates an example of an original slice of a neck and the noise of its three
layers. This slice, from a 3D volume has been acquired by a General Electric

device.

(a) Original (b) Air (c) Tissue (d) Bone

Figure 5.15: Original slice of a neck and the noise of its three layers.

Finally, from each device and each layer, we selected a group of slices to build
the RPN according to equation 5.7. Fig. 5.16 illustrates three partial RPNs

from three CT-Scanners using different layers.

(a) S1: Air RPN (b) S2: Tissue RPN (c) GE: Bone RPN

Figure 5.16: RPNs from three different CT-Scanners and using different layers.
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5.3.5.3 Results and discussion

The PCE is computed between noise component of each layer and RPN of
each device from the same layer. Figure 5.17 illustrates examples of PCEs
for three different layers, where x axis represents the slice number and y axis

represents the PCE value.

Test of 51 Test of 52 Test of GE

120 -
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(a) PCEs from the tissue layer of the three CT-Scanners

(b) PCEs from the bone of S1 (c) PCEs from the air of GE

Figure 5.17: PCEs of tested slices from 3 CT-Scanners and 3 different layers.

In Fig. 5.17.a, an example of the correlation between 1500 slices (500 from
each device respectively) and the three RPNs, regarding the soft tissue layer

only. We notice:
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e 0-500: slices from S1, they are classified correctly according to the high-

est PCE values (blue curve).

e 501-1000: slices from S2, they are classified correctly according to the

PCE with RPN of the second Siemens scanner (green curve).

e 1001-1500: slices from GE, it is quite clear that the highest values of

PCE also represent the correct classification of these slices (red curve).

In Fig. 5.17.b, the correlation of the bone layer only, between a partial tested
group of 51 and the three RPNs of the three devices. We can identify the
maximum PCE values according to the RPN of S1. In 5.17.c, the correlation
of the air layer only, between the partial tested group of GE and the three
RPNs of the three devices. The highest values of PCE with RPN of GE
classify these slices correctly.

After defining the source CT-Scanner of each tested layer of all the tested
slices according to Table 5.3, we can continue our identification criteria to
identify the source CT-Scanner of each slice. To decide whether a given slice
is correlated with a specific CT-Scanner, it should at least two of its layer are
correlated with this CT-Scanner RPN. Table. 5.4 illustrates the identification

accuracy of the separated layers.

Device \ Layer | Air Soft tissue | Bone | Majority

Siemens 1 5 % | 83 % 4% | 81.32 %
Siemens 2 2% | 72% 68 % | 83.63 %
GE 100% | 73 % 42 % 81.81 %

Table 5.4: Identification accuracy matrix.

In Table 5.4 each row represents the identification accuracy of the sepa-
rated layers of each device, the last column represents the percent of identifi-

cation in case of two layers of the same slice are correlated with this device.
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Table 5.5 illustrates the confusion matrix of the identification accuracy of the

three CT-Scanners.

Siemens 1 | Siemens 2 | GE No ID

Siemens 1 | 81.23 % 9.29 % 323 % | 625%

Siemens 2 | 4.75 % 83.63 % 424 % | 7.38%

GE) 527 % 4.03 % 81.81 % | 8.89 %

Table 5.5: Confusion identification accuracy matrix.

In Table 5.5, each row represents the identification accuracy of each device,
the last column represents the percent of slices that are not classified at all,

since at least two layers are not well classified.

5.4 Conclusion and methods comparison

In this chapter, we proposed two advanced analyses for the CT-Scanner iden-
tification problem. Based on the specificity of medical CT-Scanner images,
we presented two improvements on the CT-Scanner identification method to
authenticate it.

Our advancements were concentrated on the fingerprint extraction level
and the way it characterizes the noise. In the three directional RPNs, instead
of avoiding the noise form on 'X’ or Y’ directional axes, we characterize the
noise of each directional axis separately in its fingerprint, that help us to
identify the CT-Scanner even if the image was acquired on other directional
axis. Moreover advances were supported in the three layer RPNs, instead
of masking or removing information in the high frequency as presented in
the previous chapter, we used it to support the identification process. We
characterized the noise of each layer in its fingerprint separately, that helps

us to authenticate images even with high frequency information only.
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Many advantages are carried out by these advanced methods, we increase
the identification accuracy and decrease the false identification alarms. We
were able to identify not only the acquisition CT-Scanner but also the acqui-
sition directional axis. All of our experiments were applied on real data, and
a quite high identification performance was achieved.

Finally, Table. 5.6 illustrates the comparison among our four proposed

methods and two of the nearest ones for medical device identification, where:
e M1: Identification based on sensor noise, presented in Section 4.2.

e M2: Identification based on improving sensor noise analysis, presented

in Section 4.3.
e M3: Identification of digital radiography image |[Duan 2014].

e M4: Identification based on extending the RPN to the different axes,

presented in Section 5.2.

e M5: Identification based on expanding the RPN into different layers,

presented in Section 5.3.
e M6: Computed tomography image source identification [Duan 2015].

And Table. 5.7 illustrates the comparison among our four proposed meth-

ods according to he same dataset of test:



T SpoT3oW UOT}eIYIJUapI Jo uostreduro)) :9°¢ 9[qe],

Property/Method M1 M2 M3 M4 M5 M6
Authors Kharboutly et al. | Kharboutly et al. | Duan et al. Kharboutly et al. Kharboutly et al. | Duan et al.
Year 2014 2015 2014 2015 2016 2015
Image type CT CT Radiography | CT CT CT
Relevance to problem Sufficient Sufficient Limited Sufficient Sufficient Sufficient
Sensor noise based Yes Yes Yes Ye Yes No

Kind of method PRNU Improved PRNU | PRNU Advanced PRNU Advanced PRNU | Reconstruction footprint
Fingerprint RPN RPN and map RPN 3D RPNs and map | 3 layer RPNs RPN
Denoising filter Wiener Wiener Contourlet Wiener Wiener Wiener
Number of tested images | 8 40 234 30 60 3000
Number of tested slices 800 3,600 234 15,360 20,939 unknown
Minimum performance 95% 91.3% 99.9985% 73% 81.23% 84.95%
Maximum performance 97% 100% 99.999907% | 100% 83.63% 99.24%
Real data No No Yes No yes Unknown
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Property/Method M1 M2 M4 M5

Authors Kharboutly et al. | Kharboutly et al. | Kharboutly et al. Kharboutly et al.
Kind of method PRNU Improved PRNU | Advanced PRNU Advanced PRNU
Fingerprint RPN RPN and map 3D RPNs and map | 3 layer RPNs
Number of tested slices | 20,939 20,939 20,939 20,939

Minimum performance | 27% 31.3% 31.3% 81.23%
Maximum performance | 37% 33.3% 33.3% 83.63%

Real data yes yes yes yes
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6.1 Conclusion

In the development of medical imaging devices and transmission solutions, the
content security is always a critical issue. This thesis addresses an important
problem in the domain of medical image forensics. It is about authenticating
CT-Scanner images. Since these images are stored in DICOM format, and
the DICOM header can be modified or deformed, we want to authenticate the

acquisition device based on the image content.

Based on the literature, we proposed two groups of methods which analysis
this kind of problems. In the first one, we proposed a CT-Scanner identifica-
tion method by sensor noise analysis, where we built a fingerprint for a given
CT-Scanner. Then, we detect its presence in the tested image to identify its
source CT-Scanner. However, this fingerprint contained some scene traces, so
we applied some improvements to remove such kind of artifacts and proposed
a correlation map. The proposed correlation map aimed to give a weighting
to the more important parts of the tested image. In the second group, we ben-
efited from the two basic properties of medical images to produce two more
advanced identification methods. First, we derived a new fingerprint, which
consists of three dimension RPNs that aimed to identify the source directional
axis in order to avoid the image attacking by rotating around different direc-
tional axes. Second, from the Hounsfield scale of intensity in CT-Scan images,

we gave another new fingerprint that is composed of three layer RPNs.

Our experiments were applied on datasets of real CT-Scanners images of
phantoms and patients, and on real images of patients. We were able to
identify the CT-Scanners from its images and our proposed methods achieved

quite high identification accuracy.
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6.2 Perspectives

This thesis presents a research in medical image forensics. Many research
tracks can be carried out in this domain in order to increase the identification

performance as follows:

e Study other denoising filters [Zhong 2004, Li 2012, Satheesh 2011| and
compare their results with the proposed one in this thesis. When we
think about a new filter, we have to take in consideration two points:
first, its behavior in extracting the noise and, second, its robustness with

respect to scene traces.

e Generalize the identification method on 3D images, and study the case
of extracting a 3D RPN in order to work with 3D images directly and

not slices only.

e Associate the layer separation with the three dimension RPNs, in order
to increase the performance of identifying the different axes of tested

images.

e Study the influence of image compression [Barnsley 1993,
Taubman 2012, Lewis 1992] on the identification method, espe-
cially in the case of lossy compression. Image compression is very
important in medical images. We have to know whether the lost

information will decrease the identification performance or not.

e Study the influence of image modification [Lehmann 1999| on the iden-
tification method. Image modification includes two cases. Firstly, mod-
ifying the image by mixing some slices from different images. This can
be tested using the normal RPN, and when the tested slice has a low

correlation with respect to the other ones. Secondly, modifying the slice
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by mixing some parts from different slices. This can be tested by work-
ing with separated blocks [Strela 2001]. Then, we could detect the low
correlation blocks and study their relevance with other RPNs of other

devices.

Study the situation of attacking such kind of CT-Scanner finger-
print [Caldelli 2011, Goljan 2011, Zhang 2012, Rosenfeld 2009]. If we
insert an RPN of a given CT-Scanner in a falsified image, is it possible

to detect its falsification or not.



CHAPTER 7

Résumé en francais

Le traitement d’images médicales a pour but d’aider les médecins dans leur
diagnostic et d’améliorer 'interprétation des résultats. Les scanners tomo-
densitométriques (scanners X) sont des outils d’imagerie médicale utilisés pour
reconstruire des images 3D du corps humain. De nos jours, il est trés impor-
tant de sécuriser les images médicales lors de leur transmission, leur stockage,
leur visualisation ou de leur partage entre spécialistes. Par exemple, dans
la criminalistique des images, la capacité d’identifier le systéme d’acquisition
d’une image & partir de cette derniére seulement, est un enjeu actuel. Dans
cette thése, nous présentons une premiére analyse du probléme d’identification
des scanners X. Pour proposer une solution a ce type de problémes, nous nous
sommes basés sur les méthodes d’identification d’appareils photo. Elles re-
posent sur 'extraction de 'empreinte des capteurs. L’objectif est alors de
détecter sa présence dans les images testées. Pour extraire le bruit, nous util-
isons un filtre de Wiener basé sur une transformation en ondelettes. Ensuite,
nous nous appuyons sur les propriétés relatives aux images médicales pour
proposer des solutions avancées pour l'identification des scanners X. Ces solu-
tions sont basées sur une nouvelle conception de leur empreinte, cette derniére
étant définie en trois dimensions et sur les trois couches: os, tissu et air. Pour
évaluer notre travail, nous avons généré des résultats sur un ensemble de don-
nées réelles acquises avec différents scanners X. Finalement, nos méthodes sont

robustes et donnent une précision d’authentification élevée. Nous sommes en
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mesure d’identifier quelle machine a servi pour l'acquisition d’une image 3D

et 'axe selon lequel elle a été effectuée.
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Identification of the Acquisition System in Medical
Images by Noise Analysis

Abstract: Medical image processing aims to help the doctors to improve
the diagnosis process. Computed Tomography (CT) Scanner is an imaging
medical device used to create cross-sectional 3D images of any part of the
human body. Today, it is very important to secure medical images during their
transmission, storage, visualization and sharing between several doctors. For
example, in image forensics, a current problem consists of being able to identify
an acquisition system from only digital images. In this thesis, we present one
of the first analysis of CT-Scanner identification problem. We based on the
camera identification methods to propose a solution for such kind of problem.
It is based on extracting a sensor noise fingerprint of the CT-Scanner device.
The objective then is to detect its presence in any new tested image. To
extract the noise, we used a wavelet-based Wiener denoising filter. Then, we
depend on the properties of medical images to propose advanced solutions for
CT-Scanner identification. These solutions are based on new conceptions in
the medical device fingerprint that are the three dimension fingerprint and the
three layers one. To validate our work, we applied our experiments on multiple
real data images of multiple CT-Scanner devices. Finally, our methods that
are robust, give high identification accuracy. We were able to identify the
acquisition CT-Scanner device and the acquisition axis.

Keywords: Medical image forensics, device identification, sensor noise,

denoise filtering, device fingerprint.
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